3.282 \(\int (b \csc (e+f x))^n \sec ^m(e+f x) \, dx\)

Optimal. Leaf size=84 \[ \frac{b \cos ^2(e+f x)^{\frac{m+1}{2}} \sec ^{m+1}(e+f x) (b \csc (e+f x))^{n-1} \text{Hypergeometric2F1}\left (\frac{m+1}{2},\frac{1-n}{2},\frac{3-n}{2},\sin ^2(e+f x)\right )}{f (1-n)} \]

[Out]

(b*(Cos[e + f*x]^2)^((1 + m)/2)*(b*Csc[e + f*x])^(-1 + n)*Hypergeometric2F1[(1 + m)/2, (1 - n)/2, (3 - n)/2, S
in[e + f*x]^2]*Sec[e + f*x]^(1 + m))/(f*(1 - n))

________________________________________________________________________________________

Rubi [A]  time = 0.0868945, antiderivative size = 84, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.105, Rules used = {2631, 2577} \[ \frac{b \cos ^2(e+f x)^{\frac{m+1}{2}} \sec ^{m+1}(e+f x) (b \csc (e+f x))^{n-1} \, _2F_1\left (\frac{m+1}{2},\frac{1-n}{2};\frac{3-n}{2};\sin ^2(e+f x)\right )}{f (1-n)} \]

Antiderivative was successfully verified.

[In]

Int[(b*Csc[e + f*x])^n*Sec[e + f*x]^m,x]

[Out]

(b*(Cos[e + f*x]^2)^((1 + m)/2)*(b*Csc[e + f*x])^(-1 + n)*Hypergeometric2F1[(1 + m)/2, (1 - n)/2, (3 - n)/2, S
in[e + f*x]^2]*Sec[e + f*x]^(1 + m))/(f*(1 - n))

Rule 2631

Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(a^2*(a*Csc[e
 + f*x])^(m - 1)*(b*Sec[e + f*x])^(n + 1)*(a*Sin[e + f*x])^(m - 1)*(b*Cos[e + f*x])^(n + 1))/b^2, Int[1/((a*Si
n[e + f*x])^m*(b*Cos[e + f*x])^n), x], x] /; FreeQ[{a, b, e, f, m, n}, x] &&  !SimplerQ[-m, -n]

Rule 2577

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(b^(2*IntPart
[(n - 1)/2] + 1)*(b*Cos[e + f*x])^(2*FracPart[(n - 1)/2])*(a*Sin[e + f*x])^(m + 1)*Hypergeometric2F1[(1 + m)/2
, (1 - n)/2, (3 + m)/2, Sin[e + f*x]^2])/(a*f*(m + 1)*(Cos[e + f*x]^2)^FracPart[(n - 1)/2]), x] /; FreeQ[{a, b
, e, f, m, n}, x]

Rubi steps

\begin{align*} \int (b \csc (e+f x))^n \sec ^m(e+f x) \, dx &=\left (b^2 \cos ^{1+m}(e+f x) (b \csc (e+f x))^{-1+n} \sec ^{1+m}(e+f x) (b \sin (e+f x))^{-1+n}\right ) \int \cos ^{-m}(e+f x) (b \sin (e+f x))^{-n} \, dx\\ &=\frac{b \cos ^2(e+f x)^{\frac{1+m}{2}} (b \csc (e+f x))^{-1+n} \, _2F_1\left (\frac{1+m}{2},\frac{1-n}{2};\frac{3-n}{2};\sin ^2(e+f x)\right ) \sec ^{1+m}(e+f x)}{f (1-n)}\\ \end{align*}

Mathematica [C]  time = 0.311531, size = 281, normalized size = 3.35 \[ -\frac{b (n-3) \sec ^m(e+f x) (b \csc (e+f x))^{n-1} F_1\left (\frac{1-n}{2};m,-m-n+1;\frac{3-n}{2};\tan ^2\left (\frac{1}{2} (e+f x)\right ),-\tan ^2\left (\frac{1}{2} (e+f x)\right )\right )}{f (n-1) \left ((n-3) F_1\left (\frac{1-n}{2};m,-m-n+1;\frac{3-n}{2};\tan ^2\left (\frac{1}{2} (e+f x)\right ),-\tan ^2\left (\frac{1}{2} (e+f x)\right )\right )-2 \tan ^2\left (\frac{1}{2} (e+f x)\right ) \left ((m+n-1) F_1\left (\frac{3-n}{2};m,-m-n+2;\frac{5-n}{2};\tan ^2\left (\frac{1}{2} (e+f x)\right ),-\tan ^2\left (\frac{1}{2} (e+f x)\right )\right )+m F_1\left (\frac{3-n}{2};m+1,-m-n+1;\frac{5-n}{2};\tan ^2\left (\frac{1}{2} (e+f x)\right ),-\tan ^2\left (\frac{1}{2} (e+f x)\right )\right )\right )\right )} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(b*Csc[e + f*x])^n*Sec[e + f*x]^m,x]

[Out]

-((b*(-3 + n)*AppellF1[(1 - n)/2, m, 1 - m - n, (3 - n)/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x)/2]^2]*(b*Csc[e +
 f*x])^(-1 + n)*Sec[e + f*x]^m)/(f*(-1 + n)*((-3 + n)*AppellF1[(1 - n)/2, m, 1 - m - n, (3 - n)/2, Tan[(e + f*
x)/2]^2, -Tan[(e + f*x)/2]^2] - 2*((-1 + m + n)*AppellF1[(3 - n)/2, m, 2 - m - n, (5 - n)/2, Tan[(e + f*x)/2]^
2, -Tan[(e + f*x)/2]^2] + m*AppellF1[(3 - n)/2, 1 + m, 1 - m - n, (5 - n)/2, Tan[(e + f*x)/2]^2, -Tan[(e + f*x
)/2]^2])*Tan[(e + f*x)/2]^2)))

________________________________________________________________________________________

Maple [F]  time = 0.529, size = 0, normalized size = 0. \begin{align*} \int \left ( b\csc \left ( fx+e \right ) \right ) ^{n} \left ( \sec \left ( fx+e \right ) \right ) ^{m}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*csc(f*x+e))^n*sec(f*x+e)^m,x)

[Out]

int((b*csc(f*x+e))^n*sec(f*x+e)^m,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (b \csc \left (f x + e\right )\right )^{n} \sec \left (f x + e\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*csc(f*x+e))^n*sec(f*x+e)^m,x, algorithm="maxima")

[Out]

integrate((b*csc(f*x + e))^n*sec(f*x + e)^m, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\left (b \csc \left (f x + e\right )\right )^{n} \sec \left (f x + e\right )^{m}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*csc(f*x+e))^n*sec(f*x+e)^m,x, algorithm="fricas")

[Out]

integral((b*csc(f*x + e))^n*sec(f*x + e)^m, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (b \csc{\left (e + f x \right )}\right )^{n} \sec ^{m}{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*csc(f*x+e))**n*sec(f*x+e)**m,x)

[Out]

Integral((b*csc(e + f*x))**n*sec(e + f*x)**m, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (b \csc \left (f x + e\right )\right )^{n} \sec \left (f x + e\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*csc(f*x+e))^n*sec(f*x+e)^m,x, algorithm="giac")

[Out]

integrate((b*csc(f*x + e))^n*sec(f*x + e)^m, x)